首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2947篇
  免费   185篇
  国内免费   1篇
  2023年   5篇
  2022年   12篇
  2021年   42篇
  2020年   23篇
  2019年   36篇
  2018年   57篇
  2017年   40篇
  2016年   71篇
  2015年   86篇
  2014年   110篇
  2013年   199篇
  2012年   183篇
  2011年   171篇
  2010年   124篇
  2009年   104篇
  2008年   202篇
  2007年   183篇
  2006年   158篇
  2005年   193篇
  2004年   174篇
  2003年   172篇
  2002年   157篇
  2001年   51篇
  2000年   61篇
  1999年   42篇
  1998年   36篇
  1997年   41篇
  1996年   29篇
  1995年   25篇
  1994年   26篇
  1993年   15篇
  1992年   35篇
  1991年   28篇
  1990年   35篇
  1989年   25篇
  1988年   14篇
  1987年   22篇
  1986年   20篇
  1985年   12篇
  1984年   18篇
  1983年   14篇
  1982年   8篇
  1981年   6篇
  1980年   8篇
  1979年   9篇
  1978年   5篇
  1977年   6篇
  1974年   7篇
  1973年   8篇
  1968年   4篇
排序方式: 共有3133条查询结果,搜索用时 15 毫秒
81.
Ligation, the joining of DNA fragments, is a fundamental procedure in molecular cloning and is indispensable to the production of genetically modified organisms that can be used for basic research, the applied biosciences, or both. Given that many genes cooperate in various pathways, incorporating multiple gene cassettes in tandem in a transgenic DNA construct for the purpose of genetic modification is often necessary when generating organisms that produce multiple foreign gene products. Here, we describe a novel method, designated PRESSO (precise sequential DNA ligation on a solid substrate), for the tandem ligation of multiple DNA fragments. We amplified donor DNA fragments with non-palindromic ends, and ligated the fragment to acceptor DNA fragments on solid beads. After the final donor DNA fragments, which included vector sequences, were joined to the construct that contained the array of fragments, the ligation product (the construct) was thereby released from the beads via digestion with a rare-cut meganuclease; the freed linear construct was circularized via an intra-molecular ligation. PRESSO allowed us to rapidly and efficiently join multiple genes in an optimized order and orientation. This method can overcome many technical challenges in functional genomics during the post-sequencing generation.  相似文献   
82.
In a continuing study from Dec 2006 to Apr 2008, we characterized nine multi-drug resistant Pseudomonas aeruginosa strains isolated from four patients in a ward at the Hiroshima University Hospital, Japan. Pulsed-field gel electrophoresis of SpeI-digested genomic DNAs from the isolates suggested the clonal expansion of a single strain; however, only one strain, NK0009, was found to produce metallo-β-lactamase. PCR and subsequent sequencing analysis indicated NK0009 possessed a novel class 1 integron, designated as In124, that carries an array of four gene cassettes: a novel aminoglycoside (AG) resistance gene, aac(6′)-Iag, bla IMP-1, a truncated form of bla IMP-1, and a truncated form of aac(6′)-Iag. The aac(6′)-Iag encoded a 167-amino-acid protein that shows 40% identity with AAC(6′)-Iz. Recombinant AAC(6′)-Iag protein showed aminoglycoside 6′-N-acetyltransferase activity using thin-layer chromatography (TLC) and MS spectrometric analysis. Escherichia coli carrying aac(6′)-Iag showed resistance to amikacin, arbekacin, dibekacin, isepamicin, kanamycin, sisomicin, and tobramycin; but not to gentamicin. A conjugation experiment and subsequent Southern hybridization with the gene probes for bla IMP-1 and aac(6′)-Ig strongly suggested In124 is on a conjugal plasmid. Transconjugants acquired resistance to gentamicin and were resistant to virtually all AGs, suggesting that the In124 conjugal plasmid also possesses a gene conferring resistance to gentamicin.  相似文献   
83.

Background/Aims

The Japanese National Hospital Organization evidence-based medicine (EBM) Study group for Adverse effects of Corticosteroid therapy (J-NHOSAC) is a Japanese hospital-based cohort study investigating the safety of the initial use of glucocorticoids (GCs) in patients with newly diagnosed autoimmune diseases. Using the J-NHOSAC registry, the purpose of this observational study is to analyse the rates, characteristics and associated risk factors of intracellular infections in patients with newly diagnosed autoimmune diseases who were initially treated with GCs.

Methodology/Principal Findings

A total 604 patients with newly diagnosed autoimmune diseases treated with GCs were enrolled in this registry between April 2007 and March 2009. Cox proportional-hazards regression was used to determine independent risk factors for serious intracellular infections with covariates including sex, age, co-morbidity, laboratory data, use of immunosuppressants and dose of GCs. Survival was analysed according to the Kaplan-Meier method and was assessed by the log-rank test. There were 127 serious infections, including 43 intracellular infections, during 1105.8 patient-years of follow-up. The 43 serious intracellular infections resulted in 8 deaths. After adjustment for covariates, diabetes (Odds ratio [OR]: 2.5, 95% confidence interval [95% CI] 1.1–5.9), lymphocytopenia (≦1000/μl, OR: 2.5, 95% CI 1.2–5.2) and use of high-dose (≧30 mg/day) GCs (OR: 2.4, 95% CI 1.1–5.3) increased the risk of intracellular infections. Survival curves showed lower intracellular infection-free survival rate in patients with diabetes, lymphocytopaenia and high-dose GCs treatments.

Conclusions/Significance

Patients with newly diagnosed autoimmune diseases were at high risk of developing intracellular infection during initial treatment with GCs. Our findings provide background data on the risk of intracellular infections of patients with autoimmune diseases. Clinicians showed remain vigilant for intracellular infections in patients with autoimmune diseases who are treated with GCs.  相似文献   
84.
In leguminous plants, rhizobial infection of the epidermis triggers proliferation of cortical cells to form a nodule primordium. Recent studies have demonstrated that two classic phytohormones, cytokinin and auxin, have important functions in nodulation. The identification of these functions in Lotus japonicus was facilitated by use of the spontaneous nodule formation 2 (snf2) mutation of the putative cytokinin receptor LOTUS HISTIDINE KINASE 1 (LHK1). Analyses using snf2 demonstrated that constitutive activation of cytokinin signaling causes formation of spontaneous nodule-like structures in the absence of rhizobia and that auxin responses are induced in proliferating cortical cells during such spontaneous nodule development. Thus, cytokinin signaling positively regulates the auxin response. In the present study, we further investigated the induction of the auxin response using a gain-of-function mutation of Ca2+/calmodulin-dependent protein kinase (CCaMK) that causes spontaneous nodule formation. We demonstrate that CCaMKT265D-mediated spontaneous nodule development is accompanied by a localized auxin response. Thus, a localized auxin response at the site of an incipient nodule primordium is essential for nodule organogenesis.  相似文献   
85.
Although Aurora B is important in cleavage furrow ingression and completion during cytokinesis, the mechanism by which kinase activity is targeted to the cleavage furrow and the molecule(s) responsible for this process have remained elusive. Here, we demonstrate that an essential mitotic kinesin MKlp2 requires myosin-II for its localization to the equatorial cortex, and this event is required to recruit Aurora B to the equatorial cortex in mammalian cells. This recruitment event is also required to promote the highly focused accumulation of active RhoA at the equatorial cortex and stable ingression of the cleavage furrow in bipolar cytokinesis. Specifically, in drug-induced monopolar cytokinesis, targeting Aurora B to the cell cortex by MKlp2 is essential for cell polarization and furrow formation. Once the furrow has formed, MKlp2 further recruits Aurora B to the growing furrow. This process together with continuous Aurora B kinase activity at the growing furrow is essential for stable furrow propagation and completion. In contrast, a MKlp2 mutant defective in binding myosin-II does not recruit Aurora B to the cell cortex and does not promote furrow formation during monopolar cytokinesis. This mutant is also defective in maintaining the ingressing furrow during bipolar cytokinesis. Together, these findings reveal that targeting Aurora B to the cell cortex (or the equatorial cortex) by MKlp2 is essential for the maintenance of the ingressing furrow for successful cytokinesis.  相似文献   
86.
87.
88.
Notch signaling is an evolutionarily conserved signaling pathway and is essential for cell-fate specification in metazoans. Dysregulation of Notch signaling results in various human diseases, including cardiovascular defects and cancer. In 2000, Fringe, a known regulator of Notch signaling, was discovered as a Notch-modifying glycosyltransferase. Since then, glycosylation—a post-translational modification involving literal sugars—on the Notch extracellular domain has been noted as a critical mechanism for the regulation of Notch signaling. Additionally, the presence of diverse O-glycans decorating Notch receptors has been revealed in the extracellular domain epidermal growth factor-like (EGF) repeats. Here, we concisely summarize the recent studies in the human diseases associated with aberrant Notch glycosylation.  相似文献   
89.

Background

We previously reported that the σ1-receptor (σ1R) is down-regulated following cardiac hypertrophy and dysfunction in transverse aortic constriction (TAC) mice. Here we address how σ1R stimulation with the selective σ1R agonist SA4503 restores hypertrophy-induced cardiac dysfunction through σ1R localized in the sarcoplasmic reticulum (SR).

Methods

We first confirmed anti-hypertrophic effects of SA4503 (0.1–1 μM) in cultured cardiomyocytes exposed to angiotensin II (Ang II). Then, to confirm the ameliorative effects of σ1R stimulation in vivo, we administered SA4503 (1.0 mg/kg) and the σ1R antagonist NE-100 (1.0 mg/kg) orally to TAC mice for 4 weeks (once daily).

Results

σ1R stimulation with SA4503 significantly inhibited Ang II-induced cardiomyocyte hypertrophy. Ang II exposure for 72 h impaired phenylephrine (PE)-induced Ca2 + mobilization from the SR into both the cytosol and mitochondria. Treatment of cardiomyocytes with SA4503 largely restored PE-induced Ca2 + mobilization into mitochondria. Exposure of cardiomyocytes to Ang II for 72 h decreased basal ATP content and PE-induced ATP production concomitant with reduced mitochondrial size, while SA4503 treatment completely restored ATP production and mitochondrial size. Pretreatment with NE-100 or siRNA abolished these effects. Chronic SA4503 administration also significantly attenuated myocardial hypertrophy and restored ATP production in TAC mice. SA4503 administration also decreased hypertrophy-induced impairments in LV contractile function.

Conclusions

σ1R stimulation with the specific agonist SA4503 ameliorates cardiac hypertrophy and dysfunction by restoring both mitochondrial Ca2 + mobilization and ATP production via σ1R stimulation.

General significance

Our observations suggest that σ1R stimulation represents a new therapeutic strategy to rescue the heart from hypertrophic dysfunction.  相似文献   
90.
Several chemotherapeutic drugs have immune-modulating effects. For example, cyclophosphamide (CP) and gemcitabine (GEM) diminish immunosuppression by regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), respectively. Here, we show that intermittent (metronomic) chemotherapy with low-dose CP plus GEM can induce anti-tumor T cell immunity in CT26 colon carcinoma-bearing mice. Although no significant growth suppression was observed by injections of CP (100 mg/kg) at 8-day intervals or those of CP (50 mg/kg) at 4-day intervals, CP injection (100 mg/kg) increased the frequency of tumor peptide-specific T lymphocytes in draining lymph nodes, which was abolished by two injections of CP (50 mg/kg) at a 4-day interval. Alternatively, injection of GEM (50 mg/kg) was superior to that of GEM (100 mg/kg) in suppressing tumor growth in vivo, despite the smaller dose. When CT26-bearing mice were treated with low-dose (50 mg/kg) CP plus (50 mg/kg) GEM at 8-day intervals, tumor growth was suppressed without impairing T cell function; the effect was mainly T cell dependent. The metronomic combination chemotherapy cured one-third of CT26-bearing mice that acquired tumor-specific T cell immunity. The combination therapy decreased Foxp3 and arginase-1 mRNA levels but increased IFN-γ mRNA expression in tumor tissues. The percentages of tumor-infiltrating CD45+ cells, especially Gr-1high CD11b+ MDSCs, were decreased. These results indicate that metronomic chemotherapy with low-dose CP plus GEM is a promising protocol to mitigate totally Treg- and MDSC-mediated immunosuppression and elicit anti-tumor T cell immunity in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号